101. Absorption Spectra of N-Substituted Auramine Dyes.

By G. BREUER and J. SCHNITZER.

The absorption spectra of auramine and N-substituted auramines, their hydrochlorides, and picrates are recorded for the range 2000-5300 A.

SUBSTITUTED auramines are obtained by Fehrmann's method (*Ber.*, 1887, 20, 2851), the hydrochloride being heated with an aromatic amine :

 $(\mathrm{NMe}_{2} \cdot \mathrm{C}_{6}\mathrm{H}_{4})_{2}\mathrm{C:NH,HCl} + \mathrm{R} \cdot \mathrm{NH}_{2} = (\mathrm{NMe}_{2} \cdot \mathrm{C}_{6}\mathrm{H}_{4})_{2}\mathrm{C:NR,HCl} + \mathrm{NH}_{3} \quad (\mathrm{I.})$

Fehrmann thus synthesised (I; R = Ph), but (I; $R = \alpha$ -naphthyl) and (I; $R = \beta$ -naphthyl) were obtained by another method (D.R.P. 44077).

The salt of the unsubstituted compound is a yellow dye, and those of the phenyl and the naphthyl derivatives are orange and brownish-yellow respectively. The 2-anthryl derivative was prepared and, as expected, was a brown dye.

The absorption spectra of these compounds have been measured over the range 2500-5500 A.

Auramine hydrochloride and N-substituted auramine hydrochlorides (Fig. 1).

	с.	Maximum.		Minimum.		Maximum.	
Substance.		A.	log ε.	A.	log ε.	A.	log ε.
Auramine, HCl	${n/10,000 \atop n/50,000}$	3650	4·3 0	3800	4 ·08	4250	4 ·79
N-Phenylauramine, HCl	${n/10,000 \atop n/20,000}$	3580	4 ·31	3850	4 ·00	4220	4 ·45
N-a-Naphthylauramine, HCl	{n/10,000 n/50,000			34 50		445 0	4 ·74
N - β -Naphthylauramine, HCl	${n/10,000}$	-		3450		45 00	4 ·82
N-2-Anthrylauramine, HCl	N/10,000*			3850	4·19	415 0	4 ·28
Auramine	and N-subs	tituted	auramin	es (Fig.	2).		
Auramine	N/10,000	3600	4 ·38	3860	4 ·10	4230	4 · 4 0
N-Phenylauramine	${n/10,000 \atop n/50,000}$			2750	3·3 0	3600	4 ·68
N-a-Naphthylauramine	{n/10,000 n/50,000			2870	3.84	334 0	4 ·72
N-β-Naphthylauramine	{ n/10,000 } { n/50.000 }			2810	4 ·10	3450	4 ·76
N-2-Anthrylauramine	N/10,000*			3900	4 ·00	4520	4.19
, , , , , ,	1 3 7 7		•		(T) 0		

Auramine picrate and N-substituted auramine picrates (Fig. 3).

Auramine picrate	n/10,000			2950	3.95	4100	4.85
N-Phenylauramine picrate	n/20,000			2750	3.95	3600	4.73
N-a-Naphthylauramine picrate	n/20,000			3000	4.05	4550	4 ·70
N-β-Naphthylauramine picrate	n/20,000	3450	4.51	3700	4.35	4450	4.53

* In these solutions chloroform was used as solvent.

EXPERIMENTAL.

Auramine hydrochloride was purified by crystallising "Auramine O extra conc." from alcohol; m. p. 265° (Found : C, 63·15; H, 7·2. Calc. for $C_{17}H_{21}N_3$, HCl, H_2O : C, 63·4; H, 7·5%). 5 G. of the salt were dissolved in alcohol (1500 c.c.), cooled to 0°, and aqueous ammonia ($d \ 0.88$; 50 c.c.) added with stirring. The base was filtered off and crystallised from alcohol (after the addition of a drop of ammonia), forming slightly yellow, small crystals, m. p. 135—136° (Graebe, *Ber.*, 1887, 20, 3264, gives m. p. 136°). Its alcoholic solution, even if ammonia is added, is yellow (Semper, *Annalen*, 1911, 381, 46). Its sulphanilate, prepared in and crystallised from alcohol, formed yellow crystals, m. p. 160° (Found : C, 62·6; H, 6·5. $C_{23}H_{28}O_3N_4S$ requires C, 62·7; H, 6·4%), and its 2-hydroxy-3-naphthoate, similarly prepared and crystallised, formed yellowish crystals, m. p. 142—143° (Found : C, 74·0; H, 6·2. $C_{28}H_{29}O_3N_3$ requires C, 73·8; H, 6·4%). Its picrate had m. p. 236° (Fehrmann, *loc. cit.*, gives 230—236°). A paste of auramine hydrochloride (5 g.) and aniline (5 g.) was heated for some hours at

130° and then at 170° for some hours. The solid formed on cooling was washed with ether, dissolved in alcohol, water added, and the N-phenyl hydrochloride salted out and crystallised from alcohol; it formed orange micro-crystals (Found: C, 69.7; H, 6.9. Calc. for $C_{23}H_{25}N_3$,HCl, H_2O : C, 69.4; H, 7.1%), and dyed silk and wool an orange colour. The base was liberated by addition of 2N-potassium hydroxide to the hydrochloride solution, extracted with benzene, the solvent evaporated, and the residue crystallised from acetone (after the addition of a drop of aqueous ammonia). It formed small greenish-yellow crystals, m. p. 165° (Graebe, *loc. cit.*, gives m. p. 170°; Baither, *Ber.*, 1887, 20, 3296, gives m. p. 172°); its alcoholic solution is colourless, and its picrate is red.

Auramine hydrochloride (5 g.) was thoroughly mixed with β -naphthylamine (7 g.) and heated at 150° for 16 hrs. The solid formed on cooling was powdered, washed by decantation with ether, and crystallised from chloroform. N- β -Naphthylauramine hydrochloride forms red micro-crystals (Found : C, 75.7; H, 6.85; N, 9.9. Calc. for C₂₇H₂₇N₂,HCl : C, 75.4; H, 6.6; N, 9.8%), and dyes silk and wool a brownish-yellow colour.

From the foregoing hydrochloride, the base was prepared as for its phenyl analogue. It formed small greenish-yellow crystals, m. p. $180-181^{\circ}$, from acetone (Found : C, 82.7; H, 7.3; N, 11.05. Calc. for $C_{27}H_{27}N_3$: C, 82.4; H, 6.9; N, 10.7%); its alcoholic solution was colourless. Its picrate formed orange-red crystals from alcohol.

The hydrochloride of the α -naphthyl analogue was prepared as for the β -naphthyl compound, and when dissolved in alcohol and basified as before it yielded the base as yellow crystals, m. p. 225° (Found : C, 82.0; H, 6.9; N, 11.1%), colourless in alcoholic solution.

The latter base (1 g.) was dissolved in acetone (50 c.c.), and 0·1N-hydrochloric acid (25 c.c.) and then water (200 c.c.) added. The solution was saturated with sodium chloride, the precipitate filtered off, and crystallised from alcohol. The brownish-yellow powder did not give the analytical results required for the N- α -salt (Found : C, 70·7, 74·55, 68·5; H, 6·3, 6·3; 6·1; N, 11·9, 10·9, 11·0. C₂₇H₂₇N₃,HCl requires C, 75·4; H, 6·6; N, 9·8%). It dyed silk and wool a brownish-yellow colour, which changed after some days into a pale yellowish-buff. Skeins dyed with the other N-substituted auramine hydrochlorides kept their shade without any change.

N-α-Naphthylauramine picrate, prepared in and crystallised from alcohol, formed dark red crystals, m. p. 175—178° (Found : C, 63·3; H, 5·1. Calc. for C₃₃H₃₀O₇N₆ : C, 63·65; H, 4·9%).

Auramine hydrochloride (5 g.) was thoroughly mixed with 2-anthrylamine (3.5 g.) and heated for 24 hours at 220°, the product being treated as in the condensation with β -naphthylamine. N-2-Anthrylauramine hydrochloride formed brown micro-crystals (Found : N, 8.8. $C_{31}H_{29}N_3$, HCl requires N, 8.75%), and dyed silk and wool a brown colour. The base, liberated as before and crystallised from chloroform, formed brownish micro-crystals (Found : C, 84.3; H, 5.8; N, 9.0. $C_{31}H_{29}N_3$ requires C, 83.9; H, 6.6; N, 9.5%). It was nearly insoluble in alcohol; its chloroform solution was brown.

Absorption Spectra Data.—A quartz spectrograph (Adam Hilger, Ltd., London) which gave a dispersion of 25 cm. over the range in wave-length of 2000 to 10,000 A., and a tungsten-steel spectrum as a source of light were used. The spectrograph was equipped with a Spekker photometer. The solvent was alcohol except where denoted otherwise, and c gives the concentration.

[Received, February 8th, 1940.]